Abstract

AbstractIn a peer to peer grid computing environment, volunteers are exposed to failures such as crash and link failures. In addition, since volunteers can dynamically join and leave executions and they are not dedicated only to a peer to peer grid computing, the executions of volunteers are stopped or suspended more frequently than in a grid computing environment. These failures result in the delay and blocking of the executions of tasks and even partial or entire loss of the executions. In addition, these failures make it difficult for a volunteer server to schedule tasks and manage the allocated tasks as well as volunteers. Existing peer to peer grid computing systems, however, do not deal with these failures in scheduling mechanisms. Moreover, since existing scheduling mechanisms are performed only by a volunteer server in a centralized way, there is a high overhead.To solve these problems, we propose a mobile agent based adaptive scheduling mechanism (MAASM). We implemented MAASM in Korea@Home and ODDUGI mobile agent system. The MAASM reduces the overhead of volunteer server by using mobile agents in scheduling procedure in a distributed way. In addition, it tolerates the various failures(especially, volunteer autonomy failures) which frequently occur in a peer to peer grid computing environment. Consequently, MAASM guarantees reliable and continuous executions in spite of the failures, so it decreases total execution time.KeywordsMobile AgentTotal Execution TimeVolunteer GroupSchedule MechanismDesktop GridThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.