Abstract

AbstractThis research sheds light on the impact of user behavior on mobile that contributes to Advanced Persistent Threat (APT). Based on the research, there is a lack of understanding for APT derived from user behavior. User behavior can be defined as a user action performed on digital systems with or without malicious intent that leads to APT attacks. As a result, most Advanced Persistent Threat (APT) detection solutions failed to provide completeness and mitigate APT attacks. Therefore, this paper proposes a Mobile Advanced Persistent Threat detection based on a Device Behavior (SHOVEL) framework. This paper demonstrates how user behavior impacts Advanced Persistent Threat (APT) via social engineering attacks such as Spear phishing, watering hole, Repackaging the application, SQL injection, and Malware attacks. The proposed APT detection framework is a novel technique in the fight against APT that presents decision-making as self-adaptive, auto-predictive, and auto-reflective. Furthermore, it complies with Confidentiality, Integrity, and Availability (CIA) to protect sensitive information.KeywordsThreat modelingTactic technique and procedure (TTP)Situational awareness (SA)Zero-trust modelRisk management (RM)Attack treeMITRE ATT&CK

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.