Abstract

The most important experiences we discovered from several disasters are that cellular networks were vulnerable, and the loss of the communication system may have a catastrophic consequence. Mobile ad-hoc networks (MANETs) play a significant role in the construction of campus, resident, battlefield and search/rescue region. MANET is an appropriate network for supporting a communication where is no permanent infrastructure. MANET is an effective network that uses to establishing urgent communication between rescue members in critical situations like, disaster or natural calamities. The sending and receiving data in MANET is depending on the routing protocols to adapt the dynamic topology and maintain the routing information. Consequently, This paper evaluates the performance of three routing protocols in MANET: ad-hoc on-demand distance vector (AODV), destination sequenced distance vector (DSDV), and ad-hoc on-demand multipath distance vector (AOMDV). These protocols are inherent from different types of routing protocols: single-path, multi-path, reactive and proactive mechanisms. The NS2 simulator is utilized to evaluate the quality of these protocols. Several metrics are used to assess the performance of these protocols such: packet delivery ratio (PDR), packet loss ratios (PLR), throughput (TP), and end-to-end delay (E2E delay). The outcomes reveal the AOMDV is the most suitable protocol for time-critical events of search and rescue missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.