Abstract

Several layered transition metal borides can now be realized by a simple and general fabrication method (Fokwa et al 2018 Adv. Mater. 30 1704181), inspiring our interest to transition metal borides monolayer. Herein, we predict a new two-dimensional (2D) transition metal diboride MoB2 monolayer (ML) and study its intrinsic mechanical, thermal, electronic, and transport properties. The MoB2 ML has isotropic mechanic properties along the zigzag and armchair directions with a large Young’s stiffness, and has an ultralow room-temperature thermal conductivity. The Mo atoms dominate the metallic nature of MoB2 ML. It shows an obvious electrical anisotropy and a current-limiting behavior. Our findings suggest that MoB2 ML is a promising multifunctional material used in ultrathin high-strength mechanical materials, heat insulating materials, electrical-anisotropy-based materials, and current limiters. It is helpful for the experimentalists to further prepare and utilize the transition metal diboride 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call