Abstract
Background and objectiveDeep Learning models have emerged as a significant tool in generating efficient solutions for complex problems including cancer detection, as they can analyze large amounts of data with high efficiency and performance. Recent medical studies highlight the significance of molecular subtype detection in breast cancer, aiding the development of personalized treatment plans as different subtypes of cancer respond better to different therapies. MethodsIn this work, we propose a novel lightweight dual-channel attention-based deep learning model MOB-CBAM that utilizes the backbone of MobileNet-V3 architecture with a Convolutional Block Attention Module to make highly accurate and precise predictions about breast cancer. We used the CMMD mammogram dataset to evaluate the proposed model in our study. Nine distinct data subsets were created from the original dataset to perform coarse and fine-grained predictions, enabling it to identify masses, calcifications, benign, malignant tumors and molecular subtypes of cancer, including Luminal A, Luminal B, HER-2 Positive, and Triple Negative. The pipeline incorporates several image pre-processing techniques, including filtering, enhancement, and normalization, for enhancing the model's generalization ability. ResultsWhile identifying benign versus malignant tumors, i.e., coarse-grained classification, the MOB-CBAM model produced exceptional results with 99 % accuracy, precision, recall, and F1-score values of 0.99 and MCC of 0.98. In terms of fine-grained classification, the MOB-CBAM model has proven to be highly efficient in accurately identifying mass with (benign/malignant) and calcification with (benign/malignant) classification tasks with an impressive accuracy rate of 98 %. We have also cross-validated the efficiency of the proposed MOB-CBAM deep learning architecture on two datasets: MIAS and CBIS-DDSM. On the MIAS dataset, an accuracy of 97 % was reported for the task of classifying benign, malignant, and normal images, while on the CBIS-DDSM dataset, an accuracy of 98 % was achieved for the classification of mass with either benign or malignant, and calcification with benign and malignant tumors. ConclusionThis study presents lightweight MOB-CBAM, a novel deep learning framework, to address breast cancer diagnosis and subtype prediction. The model's innovative incorporation of the CBAM enhances precise predictions. The extensive evaluation of the CMMD dataset and cross-validation on other datasets affirm the model's efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.