Abstract

Abstract Background and Aims Vascular calcification, leading to aortic stiffening and heart failure, is decisive risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). Promoted by bone mineral disorder and systemic inflammation in CKD patients, vascular calcification is a complex mechanism involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. Despite intensive research efforts in recent years, available treatments have limited effect and none of them prevent or reverse vascular calcification. The aim of this study was to analyse the serum proteome of CKD stage 3-4 patients in order to unravel new molecular changes associated to CV morbid-mortality and to decipher the role of novel candidates on vascular calcification to provide potential new therapeutic agents. Method In this study we used serum samples from two independent cohorts: 112 CKD stage 3-4 patients with a 4 years follow-up for CV events and 222 CKD stage 5 patients exhibiting a broad range of calcification degree determined by histological quantification in the epigastric and/or iliac artery. Serum proteome analysis was performed using tandem mass-spectrometry in a subcohort of 66 CKD3-4 patients and validation of protein candidates was performed using ELISA in the two full cohorts. Human primary vascular smooth muscle cells and mouse aortic rings were used for calcification assays. Calcium content was quantified using QuantiChrom calcium assay kit and calcium deposition was visualized by Alizarin Red and Von Kossa staining. Results Among 443 proteins detected in the serum of CKD3-4 patients, 134 displayed significant modified abundance in patients with CV events (n=32) compared to patients without (n=34). One of the most prominent changes was increased level of calprotectin (up to 8.6 fold, P<.0001). Using ELISA, we validated that higher serum calprotectin levels were strongly associated with higher probability of developing CV complications and increased mortality in CKD stage 3-4 patients (Figure A). Moreover, we showed that higher serum calprotectin was associated with increased vascular calcification levels in CKD stage 5 patients (Figure B). In vitro, calprotectin promoted calcification of human VSMCs (p<0.0001) (Figures C-D) and in mouse aortic rings (p<0.0001) (Figure E-F). Interestingly, these effects were significantly attenuated by paquinimod, a calprotectin inhibitor (Figures C-F). Conclusion Circulating calprotectin is a novel predictor of CV outcome and mortality in CKD patients. Calprotectin also shows calcification-inducing properties and its blockade by paquinimod alleviates its effects. Future experiments will consist in deciphering the signalling pathways involved in the regulation of calcification by calprotectin and evaluating in vivo the therapeutic potential of paquinimod on the development of medial vascular calcification lesions associated with CKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call