Abstract

Realizing efficient immobilization of lithium polysulfides (LiPSs) as well as reversible catalytic conversion between LiPSs and the insoluble Li2S is vital to restrain the shuttle effect, which requires highly reactive catalysts for high-performance Li-S batteries. Here, three-dimensional ordered porous Mo-based metal phosphides (3DOP Mo3P/Mo) with heterogeneous structures were fabricated and utilized as separator-modified coatings for Li-S batteries to catalyze the conversion of LiPSs. The adsorption, catalytic and electrochemical performance of the corresponding cells were compared among 3DOP Mo3P/Mo and 3DOP Mo, by kinetic and electrochemical performance measurements. It was found that the cell with 3DOP Mo3P/Mo modified separator deliver better electrochemical performance, with a high specific capacity of 469.66mAh g-1 after 500 cycles at a high current density of 1°C. This work provides an idea and a guideline for the design of the separator modification for high-performance Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.