Abstract

Lithium-sulfur batteries have emerged as one of the promising next-generation energy storage devices. However, the dissolution and shuttling of polysulfides in the electrolyte leads to a rapid decrease in capacity, severe self-discharge, and poor high-temperature performance. Here, we demonstrate the design and preparation of a Mo2C nanoparticle-embedded carbon nanosheet matrix material (Mo2C/C) and its application in lithium-sulfur battery separator modification. As a polar catalyst, Mo2C/C can effectively adsorb and promote the reversible conversion of lithium polysulfides, suppress the shuttle effect, and improve the electrochemical performance of the battery. The lithium-sulfur battery with the Mo2C/C =-modified separator showed a good rate of performance with high specific capacities of 1470 and 799 mAh g-1 at 0.1 and 2 C, respectively. In addition, the long-cycle performance of only 0.09% decay per cycle for 400 cycles and the stable cycling under high sulfur loading indicate that the Mo2C/C-modified separator holds great promise for the development of high-energy-density lithium-sulfur batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call