Abstract
Ternary Mo–V oxide nanocrystals (Nano-MoVO) were hydrothermally synthesized in the confined space of a mesoporous carbon template and tested in the oxidative dehydrogenation (ODH) of ethane and propane. The synthesized nanocrystals are approximately 60 nm in length, 20 nm in diameter on average, and possess a structure resembling orthorhombic MoVO (Orth-MoVO) as indicated by spectroscopic and microscopy characterization. The Nano-MoVO catalyst has a 5-fold higher mesopore volume and a 4-fold larger external surface area than an Orth-MoVO synthesized by a conventional method (Orth-MoVO) as characterized through N2 adsorption analysis. Nano-MoVO shows similar activation energy in the ODH of ethane compared with other conventional MoVO catalysts. However, Nano-MoVO exhibits significantly higher propane/ethane activation rate ratio and higher propene selectivity even in the absence of elements such as Te and Nb that suppress overoxidation of propane-derived species to COx. The results suggest the benefits of the nanocrystalline morphology to limit overoxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.