Abstract

We analyzed the molybdenum (Mo) isotope compositions (IC) of 59 samples from two molybdenite mineralizations (Alpjahorn and Grimsel) and from a Mo-rich hydrothermal breccia (Grimsel) from the Aar Massif, Switzerland. The formation temperature of the Late Paleozoic Mo mineralizations (300–600°C) is much higher than that of the Pliocene breccia (100–160°C). The Mo IC of the molybdenites varies over 1.35‰. Even in a single hand specimen it spans 0.45‰, indicating that fractionation processes during molybdenite precipitation can vary on a cm scale. The Mo IC of most molybdenites analyzed here are significantly heavier than that of the host rock (δ98/95Mo=(0.05±0.1)‰) and show a bimodal distribution centered around δ98/95Mo≈1.1‰ and 0.2‰. This result rules out single stage Rayleigh fractionation as the relevant formation mechanism and instead, redox variations are suggested to be a main factor controlling the Mo IC of the studied high-temperature Mo deposits. The range of the Mo IC in one single deposit, the Alpjahorn, overlaps with the variation range of almost all other published values for Mo IC in Mo deposits. Compared to the molybdenites, the breccia shows an even wider variation of 3.0‰ (δ98/95Mo between −1.6‰ and +1.4‰). In contrast to the high-T molybdenite deposits, here the Mo was transported via oxidized surface waters into the breccia system, where it was reduced and precipitated. This indicates that oxidation and reduction of Mo complexes may lead to highly variable Mo IC in hydrothermal systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.