Abstract

Flowers-like 3D hierarchical ternary NiCoMo-layered double hydroxide (NiCoMo-LDH) spheres have been fabricated in substrate-free route via a one-pot hydrothermal method and utilized as efficient electrocatalysts for the OER and HER. The well-structured 3D hierarchical flowers were composed of numerous two-dimensional nanosheets, which inherently possess considerable electrochemical active sites, thereby enhancing catalytic activity. NiMo and CoMo binary LDHs, with similar morphology, were also prepared to illustrate the efficiency of the ternary LDH. The results indicate higher electrocatalytic activity for the ternary LDH as compared to binary LDHs under alkaline conditions. The NiCoMo-LDH required an overpotential as low as 202 and 93 mV to deliver a constant anodic and cathodic current density of 10 mA cm−2 for the OER and HER, respectively. Furthermore, the NiCoMo-LDH exhibited remarkable HER activity, affording a low overpotential of 198 mV at a current density of −100 mA cm−2. Moreover, it could offer a stable current density of 10 mA cm−2 for overall water splitting at 1.62 V in 1 M KOH with long-term stability for 20 h. The double-layer capacitance (Cdl) value indicated that the NiCoMo-LDH significantly influenced interface conductivity and the electrochemical active surface area. The ternary NiCoMo-LDH electrode yielded low Tafel slope values of 54 and 51 mVdec−1 for the OER and HER. Owing to the efficient incorporation of Ni, Co, and Mo in a layered structure, synergetic effect, and high electrochemical surface area, the NiCoMo-LDH exhibited remarkable electrocatalytic activity. Such eco-friendly ternary LDHs can be used in rechargeable metal–air batteries for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.