Abstract

Herein, we first propose a facile strategy to synthesize Co9S8 and MoS2 nanocrystals embedded in porous carbon nanoflake arrays supported on carbon nanofibers (Co9S8-MoS2/N-CNAs@CNFs) by the pyrolysis of Mo-doped Zn, Co zeolitic imidazolate framework grown on carbon nanofibers and subsequent sulfuration. The electrocatalyst shows high and stable electrocatalytic performance, with a half-wave potential of 0.82 V for oxygen reduction reaction and an overpotential at 10 mA cm-2 for oxygen evolution reaction (0.34 V) and hydrogen evolution reaction (0.163 V), which outperform the metal-organic framework-derived transition metal sulfide catalysts reported so far. Furthermore, the Co9S8-MoS2@N-CNAs@CNFs are employed as an air cathode in a liquid-state and all-solid-state zinc-air battery, presenting high power densities of 222 and 96 mW cm-2, respectively. Such excellent catalytic activities are mainly owing to the unique three-dimensional structure and chemical compositions, optimal electronic conductivity, adequate surface area, and the abundance of active sites. Thus, this work provides an important method for designing other metal-organic framework-derived three-dimensional structural sulfide quantum dot multifunctional electrocatalysts for wider application in highly efficient catalysis and energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.