Abstract

Purpose: Accurate measurement of skindose in radiation therapy is of considerable clinical importance, especially in treating head‐and‐neck and breast cancers.MOSFETdosimeters have been introduced as a more efficient and easier‐to‐use alternative to TLD and radio‐chromic film for skindosemeasurement. However, existing data with standard‐size MOSFET suggest large differences from TLD or film measurements. We investigated the applications of a micro‐MOSFET for skindosemeasurements and studied the correlation between the measured surface dose by micro‐MOSFET and the skindose expected from a Monte Carlo calculation. Method and Materials: 1). Measurements were conducted for normally incident 6MV and 10MV beams onto a flat solid water phantom. MOSFET data were compared with both measurements using a parallel plate ion chamber and a MCdose calculation for the build‐up region. 2). Measurements of surface dose were conducted for 6MV oblique beams incident onto the surface of a semi‐cylindrical solid water phantom. Results were compared to a MC calculated dose in a skin layer extending 2mm down from the surface. Results: For normal beam incidence, depth dosesmeasured by micro‐MOSFET agree within 3% with parallel‐plate ion chamber data and MC calculation; In the build‐up region, comparison of MOSFET data with the MC calculation suggests that the MOSFET has a water‐equivalence thickness of ∼0.5mm. For oblique beams incident on the curved phantom, the micro‐MOSFET measurements correlate well with the MC calculated skindose for a 6 MV beam, with up to ∼ 6% differences depending on the positions of the MOSFET on the surface. Results from a 10 MV beam will also be presented. Conclusion: Preliminary results indicate that the measured surface dose with a micro‐MOSFET on a curved surface under a 6MV oblique beam irradiations provide a good approximation (within ∼ 6%) of the skindose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.