Abstract
Purpose:To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual‐field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread.Methods:Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m × 2.2m × 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for the set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual‐field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients.Results:The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements.Conclusion:A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup geometry by providing a 2D image of the treatment plane as a sum of the two fields.This study has been funded by NIH grants R21EB17559 and R01CA109558 as well as Norris Cotton Cancer Center Pilot funding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.