Abstract
SummaryEarly steps in the endoplasmic reticulum (ER) lumen and cis-Golgi comprise trimming of N-glycans by class I α-mannosidases (MNSs) play crucial roles in root growth and stress response. Herein, we found that the root growth inhibition in the mns1 mns2 mns3 mutant was partially rescued under alkaline condition, and inhibitor treatment to disrupt auxin transport counteracted this alkaline-maintained root growth. Further study showed that indole-3-acetic acid (IAA) levels were undetectable in mns1 mns2 mns3 at normal condition and recovered at alkaline condition, which corroborate our N-glycopeptide profiling, from which N-glycopeptides related with IAA biosynthesis, amino acid conjugates hydrolysis, and response showed differential abundance between normal and alkaline conditions in mns1 mns2 mns3. Overall, our results linked the need for MNSs-mediated N-glycan processing in the ER and cis-Golgi with maintenance of auxin homeostasis and transport in Arabidopsis roots during the response to alkaline stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: iScience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.