Abstract
The fabrication of metal-carbon hybrids with heteroatom doping from manganese-metal organic frameworks (MOFs) has rarely been reported for peroxymonosulfate (PMS) activation. In this work, novel MnOx@N-doped carbon (MnOx@NC) nanosheets were prepared using 2D manganese-1,4 benzenedicarboxylic acid-based MOFs (Mn-MOFs) and different proportions of graphitic carbon nitride (g-C3N4, additional N source and carbon source) to activate PMS for sulfamethoxazole (SMX) removal. The polarization difference induced by Mn–N coordination during the carbonization process made C an electron-poor center and Mn an electron-rich center, thus providing more Mn(II) for PMS activation. Benefiting from the highest Mn(II) content, the most uniform and exposed MnOx active sites, abundant N active species and rich defective sites, MnOx@NC-20 showed excellent degradation (72.9% within 5 min) and mineralization performance (47.40% within 60 min) for SMX. Nonradical and radical processes worked together in MnOx@NC-20/PMS/SMX system, where singlet oxygen (1O2) dominated the degradation of SMX. N-doped carbon not only exhibited dragging and protection effects on MnOx, but also provided adsorption sites for PMS and pollutants, thus reducing their migration distance. Moreover, the electrons of organic substrates could be captured by the electron-poor carbon layer and then transported to the electron-rich Mn center, thus improving the utilization efficiency of PMS and the redox of Mn. This study provides a facile optimization method to prepare MOFs-derived carbon catalysts with improved stability and catalytic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.