Abstract

Robust and sensitive cell-based enzyme-linked immunosorbent assay (CELISA) is of great significance in the diagnosis and screening of cancer. However, the method is limited by the high rate of negative results attributed to the instability of horseradish peroxidase (HRP), H2O2, and antibody. Here, we construct a folic acid-functionalized in situ-grown MnO2 nanosheet/graphene oxide hybrid (FA-MnO2/GO) with oxidase-like activity instead of the anti-folate receptor antibody in traditional CELISA to resist the possible negative interference arising from unstable HRP, H2O2, and antibodies for more robust colorimetric detection of cancer cells. The functionalization of FA enables the selective binding between hybrid and cancer cells through the over-expressed folate receptor, and then the binding events are converted into quantitative colorimetric signals though the oxidation of the chromogenic substrate TMB catalyzed by MnO2, allowing the detection of cancer cells with colorimetric method. Moreover, the construction of MnO2/GO hybrid can synergistically enhance the oxidase-like activity of MnO2 and promote its dispersion in water, further ensuring the accuracy and sensitivity of the detection. A detection limit of 20 cancer cells is obtained by a plate reader, which is lower than those obtained by most reported CELISA methods for cancer cell detection, and as few as 75 cancer cells can be identified by the naked eye. This study not only provides a multifunctional sensing platform for robust and sensitive cancer cell detection, but also offers a promising oxidase-like mimic in the field of bioanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.