Abstract
Constructing hierarchical porous structures and reducing material size enhance the electrochemical efficiency of porous carbon-based electrodes. In this study, ultrafine hierarchical porous carbon-based nanofibers were synthesized via electrospinning a blend of polyacrylonitrile, polymethyl methacrylate (PMMA), and zinc acetate dihydrate (ZAH), followed by pre-oxidation, carbonization, and acid washing. Adjusting the ZAH content allowed precise control of fiber diameters (300-600nm) and promoted significant hierarchical porous structures, achieving an optimal mesopore to micropore ratio (1.65) and a high specific surface area (SSA) of 599 m²/g. MnO2 nanosheets were in-situ modified on the carbon nanofibers, forming a hybrid electrode (MnO2@HPCNFs) with excellent flexibility, high SSA value, and rich pore structure. This electrode demonstrated a specific capacitance value equal to 1035 F/g at 0.5 A/g and maintained 80.7% capacitance at 10 A/g. The assembled asymmetric supercapacitor achieved an energy density of 54.81 Wh/kg. This study presents new possibilities for binder-free, self-supporting electrodes in electrochemical energy storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.