Abstract
Developing highly active and durable catalysts in acid conditions remains an urgent issue due to the sluggish kinetics of oxygen evolution reaction (OER). Although RuO2 has been a state-of-the-art commercial catalyst for OER, it encounters poor stability and high cost. In this study, the electronic reservoir regulation strategy is proposed to promote the performance of acidic water oxidation via constructing a RuO2/MnO2 heterostructure supported on carbon cloth (CC) (abbreviated as RuO2/MnO2/CC). Theoretical and experimental results reveal that MnO2 acts as an electron reservoir for RuO2. It facilitates electron transfer from RuO2, enhancing its activity prior to OER, and donates electrons to RuO2, improving its stability after OER. Consequently, RuO2/MnO2/CC exhibits better performance compared to commercial RuO2, with an ultrasmall overpotential of 189mV at 10mA cm-2 and no signs of deactivation even after 800h of electrolysis in 0.5m H2SO4 at 10mA cm-2. When applied as the anode in a proton exchange membrane water electrolyzer, the cost-efficient RuO2/MnO2/CC catalyst only requires a cell voltage of 1.661V to achieve the water-splitting current of 1 A cm-2, and the noble metal cost is as low as US$ 0.00962 cm-2, indicating potential for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.