Abstract

Semiconducting nanomaterials are very important by means of their stability and wide band gap tunability. Visible light induced photoelectrocatalytic water oxidation based on these material are challenging as they have large band gap energies. Herein, we report that MnO doping can activate wide band gap semiconductors like SnO2 towards visible light induced water oxidation. Rutile SnO2 nanoparticles (band gap 3.6eV), usually absorbing at UV region, was capable of harvesting visible light when doped with MnO thereby minimizing the energy requirement for photoelctrocatalytic water splitting. The system was characterized using UV–Vis, TEM and XPS. Photoelectrocatalytic activity was examined by LSV and CPE. The highly stable catalyst showed very good photoelectrocatalytic activity for the oxidation of water under alkaline condition with low overpotential of ∼370mV at 1.0mAcm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.