Abstract
The MNK kinases are downstream of both the p38 and ERK MAP kinase pathways and act to increase gene expression. MNK inhibition using the compound CGP57380 has recently been reported to inhibit tumor necrosis factor (TNF) production in macrophage cell lines stimulated with Escherichia coli lipopolysaccharide (LPS). However, the range of receptors that signal through the MNK kinases and the extent of the resultant cytokine response are not known. We found that TNF production was inhibited in RAW264.7 macrophage cells by CGP57380 in a dose-responsive manner with agonists for Toll-like receptor (TLR) 2 (HKLM), TLR4 (Salmonella LPS), TLR6/2 (FSL), TLR7 (imiquimod), and TLR9 (CpG DNA). CGP57380 also inhibited the peak of TNF mRNA production and increased the rate of TNF mRNA decay, effects not due to the destabilizing RNA binding protein tristetraprolin (TTP). Similar to its effects on TNF, CGP57380 caused dose-responsive inhibition of TTP production from stimulation with either LPS or CpG DNA. MNK inhibition also blocked IL-6 but permitted IL-10 production in response to LPS. Studies using bone marrow-derived macrophages (BMDM) isolated from a spontaneous mouse model of Crohn's disease-like ileitis (SAMP1/YitFc strain) revealed significant inhibition by CGP57380 of the proinflammatory cytokines TNF, IL-6, and monocyte chemoattractant protein-1 at 4 and 24 h after LPS stimulation. IL-10 production was higher in CGP53870-treated BMDM at 4 h but was similar to the controls by 24 h. Taken together, these data demonstrate that MNK kinases signal through a variety of TLR agonists and mediate a potent innate, proinflammatory cytokine response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.