Abstract
Nanofibers have been demonstrated to be highly effective for drug delivery applications. Although magnetic nanoparticles (MNPs) have been potentially added to nanofibers for improved drug release stimulation, the effect has been limited. In this study, a magnetic nanofiber membrane composed of cellulose acetate (CA), collagen (COL), and MnFe2O4 MNPs was prepared by electrospinning. Naproxen (NAP) drug was deposited on the nanofibers, and the drug release mechanism and effect of the MNPs on the stimulated NAP release were investigated. The electrical conductivity of the dope solution strongly affected the nanofiber characteristics. Moreover, the MTT cytotoxicity assay proved that CA-COL, CA-COL-NAP, and CA-COL-NAP-MNP nanofibers had low toxicity, as the cell viability was >80%. The NAP release mechanism was determined using zero-order, first-order, Higuchi, and Korsmeyer-Peppas kinetics models. According to the dissolution results, for all nanofibers, the NAP release followed the Korsmeyer-Peppas kinetics model, and the transport mechanism was Fickian diffusion. A high MNP concentration and neutral pH condition were conducive to NAP release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.