Abstract

The myeloid nuclear differentiation antigen (MNDA) is a stress-induced protein that promotes degradation of the anti-apoptotic factor MCL-1 and apoptosis in myeloid cells. MNDA is also expressed in normal lymphoid cells and in B-cell clones isolated from individuals with chronic lymphocytic leukemia (CLL), a disease characterized by abnormal apoptosis control. We found that MNDA expression levels inversely correlate with the amount of the anti-apoptotic proteins MCL-1 and BCL-2 in human CLL samples. We report that in response to chemotherapeutic agents that induce genotoxic stress, MNDA exits its typical nucleolar localization and accumulates in the nucleoplasm of CLL and lymphoid cells. Then, MNDA binds chromatin at Mcl1 and Bcl2 genes and affects the transcriptional competence of RNA polymerase II. Our data also reveal that MNDA specifically associates with Mcl1 and Bcl2 (pre-) mRNAs and favors their rapid turnover as a prompt response to genotoxic stress. We propose that this rapid dynamic tuning of RNA levels, which leads to the destabilization of Mcl1 and Bcl2 transcripts, represents a post-transcriptional mechanism of apoptosis control in CLL cells. These results provide an explanation of previous clinical data and corroborate the finding that higher MNDA expression levels in CLL are associated with a better clinical course.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.