Abstract

Timely and accurate diagnosis of acute ischemic stroke (AIS) and simultaneous functional imaging of cerebral oxygen saturation (sO2) are essential to improve the survival rate of stroke patients but remains challenging. Herein, we developed a pH-responsive manganese (Mn)-based nanoplatform as a magnetic resonance/photoacoustic (MR/PA) dual-modal contrast agent for AIS diagnosis. The Mn-based nanoplatform was prepared via a simple and green biomimetic method using bovine serum albumin (BSA) as a scaffold for fabrication of MnCO3 NPs as the T1 MR contrast agent and accommodation of indocyanine green (ICG) as the PA probe. The obtained MnCO3@BSA-ICG NPs were biocompatible and exhibited a pH-responsive longitudinal relaxation rate and a concentration-dependent PA signal. In vivo MR/PA dual-modal imaging demonstrated that MnCO3@BSA-ICG NPs quickly and efficiently led to the MR/PA contrast enhancements in the infarcted area while not in the normal region, allowing a timely and accurate diagnosis of AIS. Moreover, PA imaging could directly monitor the sO2 level, enabling a functional imaging of AIS. Therefore, MnCO3@BSA-ICG NPs could be applied as a potential MR/PA contrast agent for timely and functional imaging of AIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.