Abstract

Mn5Ge3Cx compound is of great interest for spintronics applications. The various parameters of Au/Mn5Ge3C0.6/Ge(1 1 1) and Au/Mn5Ge3C0.6/δ-doped Ge(1 1 1) Schottky diodes were measured in the temperature range of 30–300 K by using current–voltage and capacitance–voltage techniques. The Schottky barrier heights and ideality factors were found to be temperature dependent. These anomalous behaviours were explained by Schottky barrier inhomogeneities and interpreted by means of a Gaussian distribution model of the Schottky barrier heights. Following this approach we show that the Mn5Ge3C0.6/Ge contact is described with a single Gaussian distribution and a conduction mechanism mainly based on the thermoionic emission. On the other hand the Mn5Ge3C0.6/δ-doped Ge contact is depicted with two Gaussian distributions according to the temperature and a thermionic-field emission process. The differences between the two types of contacts are discussed according to the distinctive features of the growth of heavily doped germanium thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.