Abstract

The environmentally benign Mn oxides play a crucial role in the transformation of organic contaminants, either through catalytically decomposing oxidants, e.g., peroxymonosulfate (PMS), or through directly oxidizing the target pollutants. Because of their dual roles and the complex surface chemical reactions, the mechanism involved in Mn oxide-catalyzed PMS activation processes remains obscure. Here, we clearly elucidate the mechanism involved in the Mn2O3 catalyzed PMS activation process by means of separating the PMS activation and the pollutant oxidation process. Mn2O3 acts as a shuttle that mediates the electron transfer from organic substrates to PMS, accompanied by the redox cycle of surface Mn(IV)/Mn(III). Multiple experimental results indicate that PMS is bound to the surface of Mn2O3 to form an inner-sphere complex, which then decomposes to form long-lived surface reactive Mn(IV) species, without the generation of sulfate radicals (SO4•-) and hydroxyl radicals (HO•). The surface reactive Mn(IV) species are proposed to be responsible for the degradation of organic contaminants (e.g., phenol) and the formation of singlet oxygen (1O2), followed by the regeneration of the surface Mn(III) sites on Mn2O3. This study advances the fundamental understanding of the underlying mechanism involved in transition metal oxide-catalyzed PMS activation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.