Abstract

Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn(2+). Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz (+), the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz (+) reduction by benzidine was a linear function of benzidine concentration. The rate of Yz (+) reduction by Mn(2+) at pH 6 increased linearly at low Mn(2+) concentrations and reached a maximum at the Mn(2+) concentrations equal to several times the reaction center concentration. The rate was inhibited by K(+), Ca(2+) and Mg(2+). These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz (+) reduction at pH 7.5 was biphasic with a fast 400 μs phase that suggests binding of Mn(2+) near Yz (+) at a site that may be one of the native manganese binding sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.