Abstract

The development of efficient and stable bifunctional overall water-splitting is a crucial goal for clean and renewable energy, which is a challenging task. Herein, we report an Mn-incorporated RuO2 (Mn-RuO2) catalyst for highly efficient electrocatalytic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid and alkaline media. Benefiting from a more electrochemical active area with the incorporation of Mn, the Mn-RuO2 required an overpotential of 200 mV to attain a current density of 10 mA/cm2 for OER in acid. DFT result indicates that the doping of Mn into RuO2 can enhance the OER activity. An acidic overall water-splitting electrolyzer with good stability constructed by bifunctional Mn-RuO2 only requires a cell voltage of 1.50 V to afford 10 mA/cm2 and can operate stably for 50 h at 50 mA/cm2, which is better than the state-of-the-art Ru-based catalyst. Additionally, the Mn-RuO2 exhibits excellent HER and OER activity in alkaline media, and it shows superior activity and durability for overall water-splitting, only needing a cell voltage of 1.49 V to attain 10 mA/cm2. The present work provides an efficient approach to designing and constructing efficient Ru-based electrocatalysts for overall water-splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.