Abstract

The reactions of 1,1-disubstituted alkenes with 4-hydroxyquinolin-2(1H)-ones under both Mn(III)-catalyzed aerobic oxidation conditions at room temperature and Mn(III)-mediated oxidation conditions at reflux temperature are described. The Mn(III)-catalyzed aerobic oxidation afforded bis(hydroperoxyethyl)quinolinones and azatrioxa[4.4.3]propellanes, while the oxidation with Mn(OAc)3·2H2O produced furo[3,2-c]quinolin-4-one analogues. The existence of a substituent at the 3-position of the 4-hydroxyquinolin-2(1H)-ones prevented a double reaction with the alkenes, and (endoperoxy)quinolinones and/or (hydroperoxyethyl)quinolinones were obtained under the Mn(III)-catalyzed aerobic conditions, while furo[3,2-c]quinolinone hemiacetals and vinylquinolinones were selectively produced under the Mn(III)-mediated oxidation conditions depending on the reaction temperature and times. Cyclic assembly of quinolinone-related 1,3-dicarbonyl compounds such as dihydropyridinones, pyranones, and dimedone derivatives was also examined under elevated temperature conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call