Abstract

The reaction of [(L)MnII ]2+ (L = neutral polypyridine ligand framework) in the presence of mCPBA (mCPBA = m-Chloroperoxybenzoic acid) generates a putative MnV =O species at RT. The proposed MnV =O species is capable of performing the aromatic hydroxylation of Cl-benzoic acid derived from mCPBA to give [(L)MnIII (m-Cl-salicylate)]+ , which in the presence of excess mCPBA generates a metastable [(L)MnV (O)(m-Cl-salicylate)]+ , characterized by UV/Vis absorption, EPR, resonance Raman spectroscopy, and ESI-MS studies. The current study highlights the fact that [(L)MnIII (m-Cl-salicylate)]+ formation may not be a dead end for catalysis. Further, a plausible mechanism has been proposed for the formation of [(L)MnV (O)-m-Cl-salicylate)]+ from [(L)MnIII (m-Cl-salicylate)]+ . The characterized transient [(L)MnV (O)-m-Cl-salicylate)]+ reported in the current work exhibits high reactivity for oxygen atom transfer reactions, supported by the electrophilic character depicted from Hammett studies using a series of para-substituted thioanisoles. The unprecedented study starting from a non-heme neutral polypyridine ligand framework paves a path for mimicking the natural active site of photosystem II under ambient conditions. Finally, evaluating the intracellular effect of Mn(II) complexes revealed an enhanced intracellular ROS and mitochondrial dysfunction to prevent the proliferation of hepatocellular carcinoma and breast cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.