Abstract

Lateral flow assays are low-cost point-of-care devices that are stable, easy to use, and provide quick results. They are mostly used as qualitative screening tests to detect biomarkers for several diseases. Quantification of the biomarkers is sometimes desirable but challenging to achieve. Magnetic nanoparticles can be used as tags, providing both visual and magnetic signals that can be detected and quantified by magnetic sensors. In the present work, we synthesized superparamagnetic MnFe2O4 nanoparticles using the hydrothermal coprecipitation route. MnFe2O4 presents low magnetic anisotropy and high saturation magnetization, resulting in larger initial magnetic susceptibility, which is crucial for optimizing the signal in inductive sensors. We functionalized the coprecipitated nanoparticles with citric acid to achieve colloidal stability in a neutral pH and to provide carboxyl groups to their surface to bioconjugate with biomolecules, such as proteins and antibodies. The nanomaterials were characterized by several techniques, and we correlated their magnetic properties with their sensitivity and resolution for magnetic detection in radiofrequency inductive sensors. We considered the NeutrAvidin/biotin model of biorecognition to explore their potential as magnetic labels in lateral flow assays. Our results show that MnFe2O4 nanoparticles are more sensitive to inductive detection than magnetite nanoparticles, the most used nanotags in magnetic lateral flow assays. These nanoparticles present high potential as magnetic tags for the development of sensitive lateral flow immunoassays for detecting and quantifying biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.