Abstract

Mn doping of BiFeO3 for microstructure and electromagnetic characteristics was investigated in BiFe1–xMnxO3 (x = 0.0, 0.05, 0.10, 0.15) nanoparticles synthesized by sol-gel preparation technique. XRD and HR-TEM research reveals that the phase structure of nanoparticles changes from rhombohedral (R3c) for BiFeO3 to cubic (Pm $$ \overline{3} $$ m) for BiFe0.9Mn0.1O3. The morphological characteristics show that the average particle sizes of the Mn-doped BiFeO3 nanoparticles were decreased as compared with that of the original BiFeO3. XPS spectroscopy analysis showed that Fe and Mn elements exist in the nanoparticles in the form of Fe2+/Fe3+ and Mn3+/Mn4+ valence states, respectively. PPMS-VSM and VAN analysis showed that a certain content of Mn doping can significantly improve the magnetic and microwave absorbing property of BiFeO3. At room temperature, the remnant magnetization and coercive field of the BiFe0.95Mn0.05FeO3 nanopowders were 0.08 emu/g and 6216 Oe, respectively. The minimum RL of BiFe0.95Mn0.05FeO3 can reach about − 29.41 dB at 10.39 GHz at 2.20 mm thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.