Abstract

Fe-XMn-5Si-10Cr-0.9C (X = 10, 15, 20, and 25 wt%) medium entropy alloys (MEAs) with different Mn contents were prepared by magnetic suspension melting in a water-cooled copper crucible, and casted in a negative pressure suction copper mould. The modified Warren–Averbach equation and the thermodynamic model were used to calculate the alloy dislocation density and stacking faults, respectively. The effects of the Mn content on the phase structure, stacking fault energy (SFE), dislocation density, and mechanical properties of the alloy were investigated. The results indicate that the MEAs possess a low stacking fault energy (∼8.50–14.44 mJ/m2) and a unique high as-cast dislocation density (up to 4.8 × 1015 m−2). The microstructure of the as-cast alloys consisted of austenite phase. As loading, the γ → ε martensite transformation occurs and is accompanied by obvious work-hardening behaviour. A low SFE and high ΔSmix improved the storage capacity of the dislocation density, promoted the formation of ε-martensite, and improve the strength and plasticity. Both the SFE and ΔSmix increased with an increase in the Mn content, and the dislocation density initially increased and then decreased. Optimising the Mn content and coordinating the balance between the SFE and ΔSmix can regulate the optimal dislocation density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.