Abstract

The molecular nest structured catalysts have demonstrated better performance than the traditional supported catalysts. However, they have not been tried in antibiotics or other organic pollutants removal from water by advanced oxidation processes (AOPs). Here we synthesized Mn anchored zeolite molecular nest (Mn@ZN) for the catalytic ozonation of cephalexin (CLX), which is the widely used antibiotic and also a refractory pollutant in water. The ozonation catalyzed by Mn@ZN achieves 97% of CLX degradation in only 2 min and a reaction rate constant of 0.2454 L·mg−1·s−1, which is 79.2 times higher than that of the non-catalytic ozonation. Even after ten cycles, the 0.46Mn@ZN/O3 still achieves a CLX degradation efficiency higher than 88% in 2 min, presenting an excellent stability. Mn ions stabilized by the molecular nests facilitate Lewis acid sites and oxygen vacancies, providing active sites for O3 sorption and decomposition into ·O2− and 1O2 through electrons transfer for the radical reaction with CLX. DFT calculation indicates that both the oxygen vacancy formation energy and the O3 adsorption energy of Mn@ZN are reduced by the Mn species introduction. This study finds a fascinating catalyst of Mn@ZN for the catalytic ozonation of antibiotics, and also a smart design strategy for zeolite confined metals catalysts for water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.