Abstract
A small zero-order resonant antenna based on the composite right-left-handed (CRLH) principle is designed and fabricated without metallic vias at 30 GHz to have patch-like radiation. The mirror images of two CRLH structures are connected to design the antenna without via holes. The equivalent circuit, parameter extraction, and dispersion diagram are studied to analyze the characteristics of the CRLH antenna. The antenna was fabricated and experimentally verified. The measured realized gain of the antenna is 5.35 dBi at 30 GHz. The designed antenna is free of spurious resonance over a band width of 10 GHz. A passive beamforming array is designed using the proposed CRLH antenna and the Butler matrix. A substrate integrated waveguide is used to implement the Butler matrix. The CRLH antennas are connected to four outputs of a 4×4 Butler matrix. The scanning angles are 12∘, -68∘, 64∘, and -11∘ for excitations from port 1 to port 4 of the 4×4 Butler matrix feeding the CRLH antenna.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.