Abstract

Recent advances in IoT, machine learning and cloud computing have placed a huge strain on wireless networks. In particular, many emerging applications require streaming rich content (such as videos) in real time, while they are constrained by energy sources. A wireless network which supports high data-rate while consuming low-power would be very attractive for these applications. Unfortunately, existing wireless networks do not satisfy this requirement. For example, WiFi backscatter and Bluetooth networks have very low power consumption, but their data-rate is very limited (less than a Mbps). On the other hand, modern WiFi and mmWave networks support high throughput, but have a high power consumption (more than a watt). To address this problem, we present mmTag, a novel mmWave backscatter network which enables low-power high-throughput wireless links for emerging applications. mmTag is a backscatter system which operates in the mmWave frequency bands. mmTag addresses the key challenges that prevent existing backscatter networks from operating at mmWave bands. We implemented mmTag and evaluated its performance empirically. Our results show that mmTag is capable of achieving 1 Gbps and 100 Mbps at 4.6 m and 8 m, respectively, while consuming only 2.4 nJ/bit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call