Abstract
Assuming a known degradation model, the performance of a learned image super-resolution (SR) model depends on how well the variety of image characteristics within the training set matches those in the test set. As a result, the performance of an SR model varies noticeably from image to image over a test set depending on whether characteristics of specific images are similar to those in the training set or not. Hence, in general, a single SR model cannot generalize well enough for all types of image content. In this work, we show that training multiple SR models for different classes of images (e.g., for text, texture, etc.) to exploit class-specific image priors and employing a post-processing network that learns how to best fuse the outputs produced by these multiple SR models surpasses the performance of state-of-the-art generic SR models. Experimental results clearly demonstrate that the proposed multiple-model SR (MMSR) approach significantly outperforms a single pre-trained state-of-the-art SR model both quantitatively and visually. It even exceeds the performance of the best single class-specific SR model trained on similar text or texture images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.