Abstract

We examine codes, over the additive Gaussian noise channel, designed for reliable communication at some specific signal-to-noise ratio (SNR) and constrained by the permitted minimum mean-square error (MMSE) at lower SNRs. The maximum possible rate is below point-to-point capacity, and hence, these are nonoptimal codes (alternatively referred to as “bad” codes). We show that the maximum possible rate is the one attained by superposition codebooks. Moreover, the MMSE and mutual information behavior as a function of SNR, for any code attaining the maximum rate under the MMSE constraint, is known for all SNR. We also provide a lower bound on the MMSE for finite length codes, as a function of the error probability of the code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.