Abstract
In this paper a novel approach for channel equalization is presented, where a framework for Volterra system is used to model both the channel and the equalizer. We propose development of first-order and second-order Volterra equalizers using minimum mean square error (MMSE) approach and design these equalizers using swarm intelligence based stochastic optimization algorithm which is applied to adapt the equalizer coefficients to the time varying channel. This work proposes to use the artificial bee colony (ABC) algorithm, recently introduced for global optimization, simulating the intelligent foraging behavior of honey bee swarm in a simple, robust, and flexible manner. For comparative analysis, adaptive equalizers like least mean squares (LMSs) equalizer, recursive least squares (RLSs) equalizer and least mean p-Norm (LMP) equalizer and population based optimum equalizers employing PSO are also applied for identical problems and the superiority of the newly proposed algorithm is aptly demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.