Abstract

Selected reaction monitoring (SRM) is a mass spectrometry-based approach commonly used to increase analytical sensitivity and selectively for specific compounds in complex metabolomic samples. While the goal of well-designed SRM methods is to monitor for unique precursor-product ion pairs, in practice this is not always possible due to the diversity of the metabome and the resolution limits of mass spectrometers that are capable of SRM. Isobaric or near-isobaric precursor ions with different chromatographic properties but identical product ions often arise in complex samples. Without analytical standards, such metabolites will go undetected by conventional data analysis methods. Furthermore, a single SRM method may include simultaneous monitoring of tens to hundreds of different metabolites across multiple samples making quantification of all detected ions a challenging task. To facilitate the analysis of SRM data from complex metabolomic samples, we have developed the Metabolite Mass Spectrometry Analysis Tool (MMSAT). MMSAT is a web-based tool that objectively quantifies every metabolite peak detected in a set of samples and aligns peaks across multiple samples to enable quantitative comparison of each metabolite between samples. The analysis incorporates quantification of multiple peaks/ions that have different chromatographic retention times but are detected within a single SRM transition. We compare the performance of MMSAT against existing tools using a human glioblastoma tissue extract and illustrate its ability to automatically quantify multiple precursors within each of three different transitions. The Web-interface and source code is avaliable at http://www.cancerresearch.unsw.edu.au/crcweb.nsf/page/MMSAT .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.