Abstract

BackgroundMicrosatellite instability (MSI), a hypermutator phenotype described in many cancers, has emerged as a predictive biomarker for immune checkpoint inhibitor therapy. Cancer heterogeneity represents a potential obstacle for the analysis of predicitive biomarkers. MSI has been reported in bladder cancer, but data on the possible extent of intratumoral heterogeneity are lacking. MethodsTo study MSI heterogeneity in bladder cancer, a tissue microarray (TMA) comprising 598 muscle-invasive urothelial carcinomas of the bladder was utilized to screen for MSI by immunhistochemistry with antibodies for MLH1, PMS2, MSH2, and MSH6. ResultsIn 9 cases suspicious for MSI, MMR status was further evaluated by large section examination and polymerase chain reaction (PCR)-based analysis of microsatellites (“Bethesda panel”) resulting in the identification of 5 validated MSI cases from 448 interpretable cancers (prevalence 1.1%). MMR deficiency always involved PMS2 loss, in 3 cases with additional loss or reduction of MLH1 expression. Four cancers were MSI-high and 1 was MSI-low in the PCR analysis. Parallel sequencing revealed an inactivating MLH1 mutation in 1 tumor but no further known pathogenic MMR gene mutations were found. Immunostaining of all available 72 cancer-containing tissue blocks of the 5 confirmed bladder cancer with MSI including prior and subsequent biopsies showed complete homogeneity of the MMR protein defects and the status of the 4 MMR proteins did not markedly change in sequential resections. In all 4 cases with noninvasive precursor lesions, MSI was also detectable. ConclusionThese data suggest that MSI occurs early in invasive bladder cancer and immunohistochemical MMR analysis on limited biopsy material is sufficient to estimate MMR status of the entire cancer mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.