Abstract
Emotional information plays an important role in various multimedia applications. Movies, as a widely available form of multimedia content, can induce multiple positive emotions and stimulate people's pursuit of a better life. Different from negative emotions, positive emotions are highly correlated and difficult to distinguish in the emotional space. Since different positive emotions are often induced simultaneously by movies, traditional single-target or multi-class methods are not suitable for the classification of movie-induced positive emotions. In this paper, we propose TransEEG, a model for multi-label positive emotion classification from a viewer's brain activities when watching emotional movies. The key features of TransEEG include (1) explicitly modeling the spatial correlation and temporal dependencies of multi-channel EEG signals using the Transformer structure based model, which effectively addresses long-distance dependencies, (2) exploiting the label-label correlations to guide the discriminative EEG representation learning, for that we design an Inter-Emotion Mask for guiding the Multi-Head Attention to learn the inter-emotion correlations, and (3) constructing an attention score vector from the representation-label correlation matrix to refine emotion-relevant EEG features. To evaluate the ability of our model for multi-label positive emotion classification, we demonstrate our model on a state-of-the-art positive emotion database CPED. Extensive experimental results show that our proposed method achieves superior performance over the competitive approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.