Abstract

Previously we reported that matrix metalloproteinase-9 (MMP-9) plays an important role in extracellular matrix (ECM) remodeling in diabetic kidney. Induction of NMDA-R and dysregulation of connexins (Cxs) were also observed. We concluded that this was due to decreased H2S production by downregulation of CBS and CSE enzymes. However, the potential role of H2S to mitigate ECM dysregulation and renal dysfunction was not clearly understood. The present study was undertaken to determine whether H2S supplementation reduces MMP-9-induced ECM remodeling and dysfunction in diabetic kidney. Wild type (C57BL/6J), diabetic (Akita, C57BL/6J-Ins2Akita), MMP-9 knockout (MMP-9−/−, M9KO) and double KO of Akita/MMP-9−/− (DKO) mice were treated without or with 0.005 g/l of NaHS (as a source of H2S) in drinking water for 30 days. Decreased tissue production and plasma content of H2S in Akita mice were ameliorated with H2S supplementation. Dysregulated expression of MMP-9, CBS, CSE, NMDA-R1 and Cxs-40, -43 was also normalized in Akita mice treated with H2S. In addition, increased renovascular resistive index (RI), ECM deposition, plasma creatinine, and diminished renal vascular density and cortical blood flow in Akita mice were normalized with H2S treatment. We conclude that diminished H2S production in renal tissue and plasma levels in diabetes mediates adverse renal remodeling, and H2S therapy improves renal function through MMP-9- and NMDA-R1-mediated pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.