Abstract

Early molecular detection of the colorectal dysplasia-carcinoma transition may augment the accuracy of diagnosis in case of biopsy orientation errors. The combination of high-throughput microarray-based biomarker screening with tissue microarray-based prospective protein biomarker expression analysis could represent an additional test in routine automated diagnostic procedures. Our aim was to test and select protein markers to identify protein expression profile alterations, focusing on the dysplasia-carcinoma transition in sporadic colorectal tumors. Dysplasia-carcinoma transition-specific transcript sets were previously identified using HGU133plus2 microarrays and Taqman RT-PCR cards. Here, 26 potential dysplasia-carcinoma transition-specific markers were tested by immunohistochemistry at the protein level using tissue microarrays in a total of 168 independent colonic biopsy samples. A set of 26 transcripts [including matrix metalloproteinase-3 (MMP3) and chemokine (C-X-C motif) ligand 1 (CXCL1)] has been determined recently, indicating a linear expression correlation with the adenoma-dysplasia-carcinoma sequence, thereby having the potential to discriminate between dysplasia and early malignancy. Currently, we find that high-grade dysplastic sessile adenomatous-stage and early-stage colorectal cancer conditions can be differentiated correctly by the stromal expression of MMP3 and CXCL1, respectively, on tissue microarray-based analysis. Furthermore, in cases of sporadic colorectal tumors, MMP3 protein expression in the lamina propria itself seems to be highly specific for the detection of tumorous transition. Our current and recent results indicate that appropriate antibody marker combinations are highly suitable for tissue microarray-based and digital microscopy-based, automated, high-capacity diagnostic application in tumorous colonic diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.