Abstract

We use wall-crossing with respect to Bridgeland stability conditions to systematically study the birational geometry of a moduli space M of stable sheaves on a K3 surface X: 1. We describe the nef cone, the movable cone, and the effective cone of M in terms of the Mukai lattice of X. 2. We establish a long-standing conjecture that predicts the existence of a birational Lagrangian fibration on M whenever M admits an integral divisor class D of square zero (with respect to the Beauville-Bogomolov form). These results are proved using a natural map from the space of Bridgeland stability conditions Stab(X) to the cone Mov(X) of movable divisors on M; this map relates wall-crossing in Stab(X) to birational transformations of M. In particular, every minimal model of M appears as a moduli space of Bridgeland-stable objects on X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.