Abstract

The matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that play a key role in both physiological and pathological tissue remodeling. Human fibroblast collagenase (MMP-1) was the first vertebrate collagenase purified as a protein and cloned as a cDNA, and is considered the prototype for all the interstitial collagenases. It is synthesized as a zymogen where N-terminal residues are removed by proteolysis and shares with other MMPs a catalytic domain and a carboxy terminal domain with sequence similarity to hemopexin. Importantly, MMP-1 should be considered a multifunctional molecule since it participates not only in the turnover of collagen fibrils in the extracellular space but also in the cleavage of a number of non-matrix substrates and cell surface molecules suggesting a role in the regulation of cellular behaviour. Furthermore, an extensive body of evidence indicates that MMP-1 plays an important role in diverse physiologic processes such as development, tissue morphogenesis, and wound repair. Likewise, it seems to be implicated in a variety of human diseases including cancer, rheumatoid arthritis, pulmonary emphysema and fibrotic disorders, suggesting that its inhibition or stimulation may open therapeutic avenues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.