Abstract

Painters can successfully recover severely damaged objects, yet current inpainting algorithms still can not achieve this ability. Generally, painters will have a conjecture about the seriously missing image before restoring it, which can be expressed in a text description. This paper imitates the process of painters' conjecture, and proposes to introduce the text description into the image inpainting task for the first time, which provides abundant guidance information for image restoration through the fusion of multimodal features. We propose a multimodal fusion learning method for image inpainting (MMFL). To make better use of text features, we construct an image-adaptive word demand module to reasonably filter the effective text features. We introduce a text guided attention loss and a text-image matching loss to make the network pay more attention to the entities in the text description. Extensive experiments prove that our method can better predict the semantics of objects in the missing regions and generate fine grained textures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.