Abstract

With the development of GPS technology, a new Mobile Internet of Things (M-IoT) is emerging, which perceives the city's rhythm and pulse day and night to collect a large scale of city data. It is urgent to innovate M-IoT service system for these large-scale and heterogeneous data. To cope with the problem, this article proposes a Mobile-IoT based multi-modal reinforcement learning service framework from data perspective, which has three highlights, i) Developing Action-aware High-order Transition Tensor ( $AHTT$ A H T T ) to fuse the heterogeneous data from M-IoTs in a unified form. ii) Developing Multi-modal Markov Decision Process ( $MMDP$ M M D P ) to model the multi-modal reinforcement learning for M-IoT service framework. iii) Developing Tensor Policy Iteration algorithm ( $TPIA$ T P I A ) to solve the optimal tensor policy. Due to using tensor keeps the multi-modal relations of the context information in the process of solving the optimal policy. The proposed M-IoT service system provides more personalized service for taxi drivers. The experiment results shows that most taxi drivers earn more revenue according to the tensor policy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.