Abstract

The macro Monte Carlo (MMC) method has been developed to improve the speed of traditional Monte Carlo (MC) high-energy electron transport calculations without loss in accuracy. The MMC algorithm uses results derived from conventional MC simulations of electron transport through macroscopic spheres of various radii and consisting of a variety of media. Based on these results, electrons are transported in macroscopic steps through the absorber. The absorber geometry is represented by a three-dimensional (3D) density matrix, typically derived from computer tomographic (CT) data. Energy lost by the electrons along their paths through the absorber is scored in a 3D dose matrix. Transport of secondary electrons and bremsstrahlung photons is taken into account. Major modifications of the original implementation of the MMC algorithm have resulted in an improved version of the code, resolving earlier problems with electron transport across interfaces of different materials, and running at a substantially higher speed. Furthermore, the code has been integrated into a clinical 3D treatment planning system. MMC results are in good agreement with results from conventional MC codes and are obtained with a speed gain of about one order of magnitude for clinically relevant irradiation situations. Calculation times to obtain a relative statistical accuracy of 2% per dose grid voxel for small electron field sizes are short enough to be routinely useful in radiotherapy clinics on present day affordable workstation computers. Considering speed, accuracy and memory requirements, MMC is a promising alternative to currently available electron dose planning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.