Abstract

AbstractUtilizing the factors of degradation and crosslinking of TPX polymer and high O2/N2 selectivity of MMA, the performances of MMA homografted TPX membrane are efficiently improved compared to those of pure TPX membrane. The degradation and crosslinking of TPX polymer solution with or without dissolved oxygen during irradiation were observed and proved in existence by the gas permeability, mechanical, and viscosity change study. High O2/N2 permeability ratio of 7.6 and fairly high oxygen permeability of 28 × 10−10 cm3 cm/cm2 s cm Hg of the membrane which was cast from the degassing polymer solution, with 20% degree of MMA grafting, can be obtained. Also the membrane for high oxygen permeability of 63 × 10−10 cm3 cm/cm2 s cm Hg with an O2/N2 permeability ratio of 4.5, which was cast from the polymer solution with dissolved oxygen, can be obtained under the condition of 60 h irradiation time and about 7% degree of grafting. O2/N2 selectivity of TPX membrane can be improved by homografting method with lower MMA grafting degree than that of heterografting method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call